New insights into 4E-BP1-regulated translation in cancer progression and metastasis.

نویسندگان

  • Jun Wang
  • Qing Ye
  • Qing-Bai She
چکیده

Remarkable progress has been made highlighting the importance of cap-dependent mRNA translation in cancer progression. 4E-BP1 is a translation initiation repressor by sequestering the mRNA cap-binding protein eIF4E and consequently inhibiting the translation of certain key oncogenic mRNAs encoding proteins for cell proliferation, survival, angiogenesis and malignancy. In most tumors, however, the repressive function of 4E-BP1 is compromised by reduction of its expression or phosphorylation mediated by oncogenic signaling pathways. We recently unveiled that 4E-BP1-regulated cap-dependent translation integrates oncogenic effects of the AKT and ERK signaling pathways on tumor growth and metastatic progression. Mechanistically, we demonstrate that AKT and ERK pathways selectively upregulate survivin expression at the level of translation by convergent activation of the mTORC1/4E-BP1/eIF4E signaling axis. In addition, loss of 4E-BP1 function induces epithelial-mesenchymal transition and increases metastatic capability of cancer cells by translational activation of Snail. Continuous translation of survivin and Snail is important for colorectal cancer progression to metastasis. Herein we discuss our findings concerning deregulation of translation in cancer progression and metastasis and highlight 4E-BP1 as a potential biomarker and therapeutic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational control is a crucial component of cancer development and progression. Eukaryotic initiation factor (eIF) 4E mediates eIF4F association with the mRNA 5' cap structure to stimulate cap-dependent translation initiation. The eIF4E-binding protein, 4E-BP1, regulates cap-dependent translation through its phosphorylation

Translational control is a crucial component of cancer development and progression. Eukaryotic initiation factor (eIF) 4E mediates eIF4F association with the mRNA 5' cap structure to stimulate cap-dependent translation initiation. The eIF4E-binding protein, 4E-BP1, regulates cap-dependent translation through its phosphorylation at multiple sites. It has been described that some human carcinomas...

متن کامل

Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail

The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epith...

متن کامل

O-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle

Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...

متن کامل

Contribution of HIF-1α in 4E-BP1 gene expression.

The eukaryotic translation initiation factor 4E (eIF4E) is necessary for the translation of capped mRNAs into proteins. Cap-dependent mRNA translation can be however inhibited by the eIF4E-binding protein 1 (4E-BP1). The hypophosphorylated forms of 4E-BP1 indeed sequester eIF4E and thus block translation initiation and consequent protein synthesis. Different reports indicate that, in addition t...

متن کامل

4E-BP1 as an oncotarget

The cap-dependent mRNA translation process that enables post-transcriptional control of gene expression and protein synthesis is tightly regulated in eukaryotes. Deregulation of this process, particularly in the formation of the eIF4F translation initiation complex— comprising the eIF4E mRNA cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase—is associated with cancer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer cell & microenvironment

دوره 1 5  شماره 

صفحات  -

تاریخ انتشار 2014